Polar Wander of Mars Driven by Degree-1 Mantle Convection and Its Implications for the Formation of the Crustal Dichotomy and the Tharsis Rise

نویسنده

  • James H. Roberts
چکیده

The topography on Mars is dominated by the crustal dichotomy between the northern and southern hemispheres and the Tharsis rise on the equator[1]. No explanation has been offered so far as to why the dichotomy should be in its current orientation rather than another. The geoid is currently dominated by Tharsis [2] and rotational stability suggests that a Tharsis-sized load would induce polar wander to place itself on the equator if it did not originate there [3]. However, little tectonic evidence for this excursion exists [4]. Furthermore, it is possible to place Tharsis on the equator and allow the dichotomy to have an arbitrary orientation. Here, we examine mechanisms that may be responsible for the formation of the crustal dichotomy and its current orientation. It has been shown that degree-1 mantle convection can arise in early Mars-like conditions on a timescale (within the first couple hundred Ma) appropriate to the formation of the dichotomy [5]. Geoid anomalies arising from mass heterogeneities due to convection and from the resulting dynamic topography may induce polar wander and reorient the planet.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Causes and Consequences of the Crustal Dichotomy and Their Implications for the Early Evolution of Mars

Introduction: The two most striking surface features on Mars are the crustal dichotomy and the Tharsis Rise [1]. While it is generally accepted that the Tharsis Rise is formed as a result of plume related volcanism [2], the formation mechanism for the crustal dichotomy is controversial with two main competing proposals: endogenic (mantle convection and flow) [3-5] and exo-genic (mega-impact) me...

متن کامل

Crustal structure of Mars from gravity and topography

[1] Mars Orbiter Laser Altimeter (MOLA) topography and gravity models from 5 years of Mars Global Surveyor (MGS) spacecraft tracking provide a window into the structure of the Martian crust and upper mantle. We apply a finite-amplitude terrain correction assuming uniform crustal density and additional corrections for the anomalous densities of the polar caps, the major volcanos, and the hydrost...

متن کامل

Long‐wavelength stagnant lid convection with hemispheric variation in lithospheric thickness: Link between Martian crustal dichotomy and Tharsis?

[1] A dynamic link between the early evolution of Tharsis and the crustal dichotomy on Mars was recently proposed by Zhong (2009). We address in detail the fundamental aspects of the proposed model using 3‐D spherical shell modeling of convection. We investigate the conditions under which a spherical harmonic degree 1 flow is produced in the mantle of Mars in layered viscosity models with diffe...

متن کامل

Degree-1 mantle convection and the crustal dichotomy on Mars

The surface of Mars consists of an old, heavily cratered and elevated southern hemisphere and younger, resurfaced and depressed northern hemisphere, a feature often termed the crustal dichotomy. The global crustal structure [Zuber et al., 2000] revealed by topography and gravity data from the Mars Global Surveyor spacecraft, and the possible late formation of the boundary zone between the hemis...

متن کامل

DEGREE-1 MANTLE CONVECTION AND THE ORIGIN OF THE MARTIAN HEMISPHERIC DICHOTOMY. James

The hemispheric dichotomy on Mars is largely an expression of varying crustal thickness [1]. Although there is some disagreement as to the timing of its formation, the dichotomy is very old, forming during or before the early Noachian [2]. Several formation mechanisms, including both exogenic (giant impacts) [3] and endogenic processes including mantle convection [4], plate tectonics [5], and o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006